论文标题

静态间距的紧凑支撑扰动的波浪解析

The wave resolvent for compactly supported perturbations of static spacetimes

论文作者

Wrochna, Michał, Zeitoun, Ruben

论文摘要

在本说明中,我们考虑Wave Operator $ \ square_g $在全球双曲线,紧凑的静态扰动的情况下。我们给出了基本证明$ \ square_g $的基本自我相关性以及在这种情况下解决的均匀的微局部估计值。这提供了研究Lorentzian光谱Zeta函数的模型,该模型特别简单,但足够通用,可以从光谱Lagrangian中局部得出爱因斯坦方程。

In this note, we consider the wave operator $\square_g$ in the case of globally hyperbolic, compactly supported perturbations of static spacetimes. We give an elementary proof of the essential self-adjointness of $\square_g$ and of uniform microlocal estimates for the resolvent in this setting. This provides a model for studying Lorentzian spectral zeta functions which is particularly simple, yet sufficiently general for locally deriving Einstein equations from a spectral Lagrangian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源