论文标题
静态间距的紧凑支撑扰动的波浪解析
The wave resolvent for compactly supported perturbations of static spacetimes
论文作者
论文摘要
在本说明中,我们考虑Wave Operator $ \ square_g $在全球双曲线,紧凑的静态扰动的情况下。我们给出了基本证明$ \ square_g $的基本自我相关性以及在这种情况下解决的均匀的微局部估计值。这提供了研究Lorentzian光谱Zeta函数的模型,该模型特别简单,但足够通用,可以从光谱Lagrangian中局部得出爱因斯坦方程。
In this note, we consider the wave operator $\square_g$ in the case of globally hyperbolic, compactly supported perturbations of static spacetimes. We give an elementary proof of the essential self-adjointness of $\square_g$ and of uniform microlocal estimates for the resolvent in this setting. This provides a model for studying Lorentzian spectral zeta functions which is particularly simple, yet sufficiently general for locally deriving Einstein equations from a spectral Lagrangian.