论文标题
纳入半监督和积极的未标记学习,以促进完整的参考图像质量评估
Incorporating Semi-Supervised and Positive-Unlabeled Learning for Boosting Full Reference Image Quality Assessment
论文作者
论文摘要
全参考(FR)图像质量评估(IQA)通过测量其原始质量参考的感知差异来评估扭曲图像的视觉质量,并已广泛用于低级视觉任务。在训练FR-IQA模型中,需要成对标记的具有平均意见分数(MOS)的数据,但既费时又繁琐收集。相反,可以轻松地从图像降解或恢复过程中收集未标记的数据,从而鼓励利用未标记的培训数据来提高FR-IQA性能。此外,由于标记的数据和未标记的数据之间的分布不一致,在未标记的数据中可能发生异常值,从而进一步增加了训练难度。在本文中,我们建议将半监督和积极的未标记(PU)学习用于利用未标记的数据,同时减轻异常值的不利影响。特别是,通过将所有标记的数据视为阳性样品,PU学习可以从未标记的数据中识别出负样本(即离群值)。半监督学习(SSL)将通过动态生成伪MOS来进一步部署以利用积极的未标记数据。我们采用双分支网络,包括参考和失真分支。此外,参考分支中引入了空间注意力,以更多地集中在信息性区域上,切成薄片的瓦斯坦距离用于鲁棒差异图计算,以解决由GAN模型恢复的图像引起的未对准问题。广泛的实验表明,我们的方法对基准数据集Pipal,Kadid-10k,TID2013,Live和csiq上的最先进的方法表现出色。
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference, and has been widely used in low-level vision tasks. Pairwise labeled data with mean opinion score (MOS) are required in training FR-IQA model, but is time-consuming and cumbersome to collect. In contrast, unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance. Moreover, due to the distribution inconsistency between labeled and unlabeled data, outliers may occur in unlabeled data, further increasing the training difficulty. In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers. Particularly, by treating all labeled data as positive samples, PU learning is leveraged to identify negative samples (i.e., outliers) from unlabeled data. Semi-supervised learning (SSL) is further deployed to exploit positive unlabeled data by dynamically generating pseudo-MOS. We adopt a dual-branch network including reference and distortion branches. Furthermore, spatial attention is introduced in the reference branch to concentrate more on the informative regions, and sliced Wasserstein distance is used for robust difference map computation to address the misalignment issues caused by images recovered by GAN models. Extensive experiments show that our method performs favorably against state-of-the-arts on the benchmark datasets PIPAL, KADID-10k, TID2013, LIVE and CSIQ.