论文标题

连接两个中心问题的接近度有效算法

An Efficient Algorithm for the Proximity Connected Two Center Problem

论文作者

Bhattacharya, Binay, Mozafari, Amirhossein, Shermer, Thomas C.

论文摘要

鉴于飞机上的$ n $点的$ p $ $ n $点,$ k $中心的问题是找到$ k $一致的磁盘,最小可能的半径是,使他们的工会在$ p $中涵盖了所有点。 $ 2 $ - 中心问题是$ k $ - 中心问题的一种特殊情况,在最近的过去\ cite {cahn,ht,sh}中已经进行了广泛的研究。在本文中,我们考虑了$ 2 $ - 中心问题的广义版本,称为\ textit {proximity connected} $ 2 $ - center(pctc)问题。在此问题中,我们还为我们提供了一个参数$δ\ geq 0 $,并且我们有一个额外的约束,即磁盘中心之间的距离最多应为$δ$。请注意,当$δ= 0 $时,PCTC问题将减少到$ 1 $ - center(最小封闭磁盘)问题,当$δ$倾向于无穷大时,将其减少到$ 2 $ center的问题。 PCTC问题首先出现在1992年的无线网络的背景下\ cite {acn0},但获得了该问题的非平凡确定性算法。在本文中,我们通过为问题提供确定性$ O(n^2 \ log n)$ time算法来解决这个开放问题。

Given a set $P$ of $n$ points in the plane, the $k$-center problem is to find $k$ congruent disks of minimum possible radius such that their union covers all the points in $P$. The $2$-center problem is a special case of the $k$-center problem that has been extensively studied in the recent past \cite{CAHN,HT,SH}. In this paper, we consider a generalized version of the $2$-center problem called \textit{proximity connected} $2$-center (PCTC) problem. In this problem, we are also given a parameter $δ\geq 0$ and we have the additional constraint that the distance between the centers of the disks should be at most $δ$. Note that when $δ=0$, the PCTC problem is reduced to the $1$-center(minimum enclosing disk) problem and when $δ$ tends to infinity, it is reduced to the $2$-center problem. The PCTC problem first appeared in the context of wireless networks in 1992 \cite{ACN0}, but obtaining a nontrivial deterministic algorithm for the problem remained open. In this paper, we resolve this open problem by providing a deterministic $O(n^2\log n)$ time algorithm for the problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源