论文标题

无监督的对比度散布散装检索

Unsupervised Contrastive Hashing for Cross-Modal Retrieval in Remote Sensing

论文作者

Mikriukov, Georgii, Ravanbakhsh, Mahdyar, Demir, Begüm

论文摘要

基于任何模态中查询的不同模态搜索和检索语义相关数据的跨模式检索系统的开发吸引了遥感(RS)引起了极大的关注。在本文中,我们将注意力集中在跨模式的文本图像检索上,其中一种模式(例如,文本)的查询可以匹配到另一个模式(例如,图像)。 RS中大多数现有的跨模式文本图像检索系统都需要大量标记的训练样本,并且不允许快速和记忆力的检索。这些问题限制了现有的跨模式检索系统在Rs中的大规模应用中的适用性。为了解决这个问题,在本文中,我们引入了一种新型的无监督的跨模式对比度哈希(DUCH)方法,用于卢比的文本图像检索。为此,提出的duch由两个主要模块组成:1)特征提取模块,该模块提取了两种方式的深度表示; 2)学会从提取的表示形式生成跨模式二进制哈希码的哈希模块。我们介绍了一种新型的多目标损失函数,包括:i)对比目标,可以在内部和模式间相似性中保存相似性; ii)对跨模式表示一致性的两种方式强制执行的对抗目标; iii)用于生成哈希代码的二进制目标。实验结果表明,拟议的Duch胜过最先进的方法。我们的代码可在https://git.tu-berlin.de/rsim/duch上公开获取。

The development of cross-modal retrieval systems that can search and retrieve semantically relevant data across different modalities based on a query in any modality has attracted great attention in remote sensing (RS). In this paper, we focus our attention on cross-modal text-image retrieval, where queries from one modality (e.g., text) can be matched to archive entries from another (e.g., image). Most of the existing cross-modal text-image retrieval systems in RS require a high number of labeled training samples and also do not allow fast and memory-efficient retrieval. These issues limit the applicability of the existing cross-modal retrieval systems for large-scale applications in RS. To address this problem, in this paper we introduce a novel unsupervised cross-modal contrastive hashing (DUCH) method for text-image retrieval in RS. To this end, the proposed DUCH is made up of two main modules: 1) feature extraction module, which extracts deep representations of two modalities; 2) hashing module that learns to generate cross-modal binary hash codes from the extracted representations. We introduce a novel multi-objective loss function including: i) contrastive objectives that enable similarity preservation in intra- and inter-modal similarities; ii) an adversarial objective that is enforced across two modalities for cross-modal representation consistency; and iii) binarization objectives for generating hash codes. Experimental results show that the proposed DUCH outperforms state-of-the-art methods. Our code is publicly available at https://git.tu-berlin.de/rsim/duch.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源