论文标题

部分可观测时空混沌系统的无模型预测

Label Efficient Regularization and Propagation for Graph Node Classification

论文作者

Xie, Tian, Kannan, Rajgopal, Kuo, C. -C. Jay

论文摘要

最近提出了一种称为GraphHop的增强标签传播方法(LP)方法。在各个网络上的半监督节点分类任务中,它的表现优于图形卷积网络(GCN)。尽管GraphHop的性能通过关节节点属性和标签信号平滑来直观地解释,但缺乏其严格的数学处理。在本文中,我们提出了用于图源分类的标签有效的正则化和传播(LERP)框架,并为其解决方案提供了替代优化过程。此外,我们表明GraphHop仅为该框架提供了一个大致的解决方案,并且有两个缺点。首先,它包括分类器培训中的所有节点,而无需在标签更新步骤中考虑伪标记的节点的可靠性。其次,它为标签聚合步骤中的子问题的最佳提供了粗糙的近似值。基于LERP框架,我们提出了一种名为LERP方法的新方法来解决这两个缺点。 LERP在替代优化期间自适应地确定可靠的伪标签,并以计算效率为最佳提供了更好的近似值。保证LERP的理论融合。进行了广泛的实验以证明LERP的有效性和效率。也就是说,LERP在五个测试数据集上始终超过所有基准测试方法,包括GraphHop,并以极低的标签速率(即,每班1、2、2、4、8、16和20个标记的样本)以极低的标签率(即,对象识别任务)的表现均优于所有基准测试方法。

An enhanced label propagation (LP) method called GraphHop was proposed recently. It outperforms graph convolutional networks (GCNs) in the semi-supervised node classification task on various networks. Although the performance of GraphHop was explained intuitively with joint node attribute and label signal smoothening, its rigorous mathematical treatment is lacking. In this paper, we propose a label efficient regularization and propagation (LERP) framework for graph node classification, and present an alternate optimization procedure for its solution. Furthermore, we show that GraphHop only offers an approximate solution to this framework and has two drawbacks. First, it includes all nodes in the classifier training without taking the reliability of pseudo-labeled nodes into account in the label update step. Second, it provides a rough approximation to the optimum of a subproblem in the label aggregation step. Based on the LERP framework, we propose a new method, named the LERP method, to solve these two shortcomings. LERP determines reliable pseudo-labels adaptively during the alternate optimization and provides a better approximation to the optimum with computational efficiency. Theoretical convergence of LERP is guaranteed. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of LERP. That is, LERP outperforms all benchmarking methods, including GraphHop, consistently on five test datasets and an object recognition task at extremely low label rates (i.e., 1, 2, 4, 8, 16, and 20 labeled samples per class).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源