论文标题

学习检索运动计划的相关经验

Learning to Retrieve Relevant Experiences for Motion Planning

论文作者

Chamzas, Constantinos, Cullen, Aedan, Shrivastava, Anshumali, Kavraki, Lydia E.

论文摘要

最近的工作表明,通过从数据库中检索过去的经验可以大大提高运动计划者的性能。通常,使用在运动计划问题上定义的相似性函数来查询经验数据库。但是,迄今为止,大多数作品都依赖于简单的手工制作的相似性功能,并且无法在其相应的培训数据集之外推广。为了解决此限制,我们提出(FIRE),该框架提取了计划问题的本地表示并了解它们的相似性功能。为了生成训练数据,我们引入了一种新型的自我监督方法,该方法从过去的解决方案路径中识别出类似和不同的局部原语。借助这些对,暹罗网络接受了对比损失的训练,并且在网络的潜在空间中实现了相似性函数。我们在具有感知的环境的五种运动计划问题中对8多型操纵器的火灾进行评估。我们的实验表明,火灾检索相关的经验,即使在培训分配以外的问题上,可以指导基于抽样的计划者,表现优于其他基线。

Recent work has demonstrated that motion planners' performance can be significantly improved by retrieving past experiences from a database. Typically, the experience database is queried for past similar problems using a similarity function defined over the motion planning problems. However, to date, most works rely on simple hand-crafted similarity functions and fail to generalize outside their corresponding training dataset. To address this limitation, we propose (FIRE), a framework that extracts local representations of planning problems and learns a similarity function over them. To generate the training data we introduce a novel self-supervised method that identifies similar and dissimilar pairs of local primitives from past solution paths. With these pairs, a Siamese network is trained with the contrastive loss and the similarity function is realized in the network's latent space. We evaluate FIRE on an 8-DOF manipulator in five categories of motion planning problems with sensed environments. Our experiments show that FIRE retrieves relevant experiences which can informatively guide sampling-based planners even in problems outside its training distribution, outperforming other baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源