论文标题

深平衡光流估计

Deep Equilibrium Optical Flow Estimation

论文作者

Bai, Shaojie, Geng, Zhengyang, Savani, Yash, Kolter, J. Zico

论文摘要

许多最新的最新的(SOTA)光流模型都使用有限的复发更新操作来模仿传统算法,从而鼓励迭代的改进对稳定的流量估计。但是,这些RNN施加了大型计算和内存开销,并且未直接训练以建模这种稳定的估计。它们会融合较差,从而遭受性能降解。为了打击这些缺点,我们提出了深层平衡(DEQ)流量估计器,该方法可以直接解决该流程作为隐式层的无限级固定点(使用任何黑色框求解器),并通过分析固定点(因此需要$ O(1)$训练记忆)。这种隐式深度方法并非基于任何特定模型,因此可以应用于广泛的SOTA流量估计模型设计。这些DEQ流量估计器的使用使我们能够使用固定点的重复使用和不精确的梯度来计算流程,消耗$ 4 \ sim6 \ times $倍$倍的训练记忆少于反复出现的训练记忆,并通过相同的计算预算获得更好的结果。此外,我们提出了一种新颖的,稀疏的固定点校正方案,以稳定我们的DEQ流量估计器,该方案总体上解决了DEQ模型的长期挑战。我们在各种现实的设置中测试了我们的方法,并表明它可以改善SINTEL和KITTI数据集上的SOTA方法,其计算和内存效率基本上可以提高。

Many recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms by encouraging iterative refinements toward a stable flow estimation. However, these RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation. They can converge poorly and thereby suffer from performance degradation. To combat these drawbacks, we propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer (using any black-box solver), and differentiates through this fixed point analytically (thus requiring $O(1)$ training memory). This implicit-depth approach is not predicated on any specific model, and thus can be applied to a wide range of SOTA flow estimation model designs. The use of these DEQ flow estimators allows us to compute the flow faster using, e.g., fixed-point reuse and inexact gradients, consumes $4\sim6\times$ times less training memory than the recurrent counterpart, and achieves better results with the same computation budget. In addition, we propose a novel, sparse fixed-point correction scheme to stabilize our DEQ flow estimators, which addresses a longstanding challenge for DEQ models in general. We test our approach in various realistic settings and show that it improves SOTA methods on Sintel and KITTI datasets with substantially better computational and memory efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源