论文标题
无监督的对比域适应语义分割
Unsupervised Contrastive Domain Adaptation for Semantic Segmentation
论文作者
论文摘要
语义分割模型在存在域转移的情况下努力概括。在本文中,我们引入了跨域适应性特征对准的对比度学习。我们组装了内域对比对和跨域对比对,以学习跨域对齐的判别特征。根据所得良好的特征表示形式,我们引入了一种标签扩展方法,该方法能够在适应过程中发现艰难类别的样本以进一步提高性能。所提出的方法始终优于域适应的最先进方法。当培训合成GTA5数据集以及未标记的CityScapes图像时,它在CityScapes数据集上实现了60.2%的MIOU。
Semantic segmentation models struggle to generalize in the presence of domain shift. In this paper, we introduce contrastive learning for feature alignment in cross-domain adaptation. We assemble both in-domain contrastive pairs and cross-domain contrastive pairs to learn discriminative features that align across domains. Based on the resulting well-aligned feature representations we introduce a label expansion approach that is able to discover samples from hard classes during the adaptation process to further boost performance. The proposed approach consistently outperforms state-of-the-art methods for domain adaptation. It achieves 60.2% mIoU on the Cityscapes dataset when training on the synthetic GTA5 dataset together with unlabeled Cityscapes images.