论文标题
快速,存储高效的网络朝着有效的图像超分辨率
Fast and Memory-Efficient Network Towards Efficient Image Super-Resolution
论文作者
论文摘要
运行时和内存消耗是在资源约束设备上部署有效图像超分辨率(EISR)模型的两个重要方面。 EISR的最新进展利用了蒸馏和聚合策略,具有大量的频道分割和串联操作,以充分利用有限的层次结构功能。相比之下,顺序网络操作避免了经常访问前面的状态和额外的节点,因此有益于减少内存消耗和运行时开销。遵循这个想法,我们通过主要堆叠多个高度优化的卷积和激活层并减少功能融合的使用来设计轻量级网络骨干。我们提出了一个新颖的顺序关注分支,每个像素都是根据本地和全球环境分配的重要因素,以增强高频细节。此外,我们为EISR定制残留块,并提出增强的残留块(ERB),以进一步加速网络推断。最后,结合上述所有技术,我们构建了一个快速,记忆效率的网络(FMEN)及其小型FMEN-S,该FMEN-S的运行速度快33%,并且与最先进的EISR模型相比,它可以降低74%的内存消耗:E-RFDN,AIM 2020 AIM 2020高效超级分辨率挑战的冠军E-RFDN。此外,FMEN-S可以实现最低的内存消耗,而在NTIRE 2022挑战中,在有效的超级分辨率上挑战了第二个最短的运行时。代码可在https://github.com/nju-jet/fmen上找到。
Runtime and memory consumption are two important aspects for efficient image super-resolution (EISR) models to be deployed on resource-constrained devices. Recent advances in EISR exploit distillation and aggregation strategies with plenty of channel split and concatenation operations to make full use of limited hierarchical features. In contrast, sequential network operations avoid frequently accessing preceding states and extra nodes, and thus are beneficial to reducing the memory consumption and runtime overhead. Following this idea, we design our lightweight network backbone by mainly stacking multiple highly optimized convolution and activation layers and decreasing the usage of feature fusion. We propose a novel sequential attention branch, where every pixel is assigned an important factor according to local and global contexts, to enhance high-frequency details. In addition, we tailor the residual block for EISR and propose an enhanced residual block (ERB) to further accelerate the network inference. Finally, combining all the above techniques, we construct a fast and memory-efficient network (FMEN) and its small version FMEN-S, which runs 33% faster and reduces 74% memory consumption compared with the state-of-the-art EISR model: E-RFDN, the champion in AIM 2020 efficient super-resolution challenge. Besides, FMEN-S achieves the lowest memory consumption and the second shortest runtime in NTIRE 2022 challenge on efficient super-resolution. Code is available at https://github.com/NJU-Jet/FMEN.