论文标题

3-sasaki结构的射影几何形状

Projective geometry of 3-Sasaki structures

论文作者

Gover, A. Rod, Neusser, Katharina, Willse, Travis

论文摘要

我们表明,$ 3 $ -SASAKI结构在投影差异几何形状方面接受了自然描述。此描述通过单个统一图片提供了$ 3 $ -SASAKI结构与其他几种几何和构造之间的具体链接。首先,我们确定可以将$ 3 $ -SASAKI的结构理解为一种投影结构,该结构配备了一定的全能减少到(可能是不确定的)统一Quaternionic Group $ \ textrm {sp}(p,q)$,即,在预测的Tractor Bundle Bundle bundle bundle bundle bundle bundle bundle bundle bundle bundle bundle bunders buncection the Profactive tracter bundle bunce bundle bunce bundle bunce bunce。对于匡威,其中一个从投影拖拉机束上的一般平行的Hyperkähler结构开始的,而通用条件不是自动的。确实,我们证明,这种降低通常将基本的流形分解为阶层的不相交结合,包括(不确定)$ 3 $ -SASAKI结构的开放式歧管和相对于$ 3 $ -SASASAKI量表的Infinity的封闭性分离的超浮雕。此外,结果表明,后一种超表面继承了双象夫人的串好结构,因此(在局部)纤维在Quaternionic接触结构上(局部)纤维,然后又压缩了自然的QuaternionicKähler的Kähler,$ 3 $ -SASAKI的开放式谱系上的$ 3 $ -Sasaki结构。作为应用程序,我们描述了(适当)完整的,非压缩(不确定)$ 3 $ -SASAKI流形的投射压实,并恢复了Biquard关于渐近夸张的四离子QuaternionicKähler指标的概念。

We show that $3$-Sasaki structures admit a natural description in terms of projective differential geometry. This description provides a concrete link between $3$-Sasaki structures and several other geometries and constructions via a single unifying picture. First we establish that a $3$-Sasaki structure may be understood as a projective structure equipped with a certain holonomy reduction to the (possibly indefinite) unitary quaternionic group $\textrm{Sp}(p,q)$, namely a parallel hyperkähler structure on the projective tractor bundle satisfying a particular genericity condition. For the converse, where one begins with a general parallel hyperkähler structure on the projective tractor bundle, the genericity condition is not automatic. Indeed we prove that generically such a reduction decomposes the underlying manifold into a disjoint union of strata including open manifolds with (indefinite) $3$-Sasaki structures and a closed separating hypersurface at infinity with respect to the $3$-Sasaki metrics. Moreover, it is shown that the latter hypersurface inherits a Biquard-Fefferman conformal structure, which thus (locally) fibres over a quaternionic contact structure, and which in turn compactifies the natural quaternionic Kähler quotients of the $3$-Sasaki structures on the open manifolds. As an application we describe the projective compactification of (suitably) complete, non-compact (indefinite) $3$-Sasaki manifolds and recover Biquard's notion of asymptotically hyperbolic quaternionic Kähler metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源