论文标题
预测电点价格的双重广义长期记忆建模:神经网络和小波估计
A Dual Generalized Long Memory Modelling for Forecasting Electricity Spot Price: Neural Network and Wavelet Estimate
论文作者
论文摘要
在本文中,已经提出了双重广泛的长期内存建模来预测电位价格。首先,我们专注于模拟该系列的条件平均值,因此我们采用了广义的分数k因子Gegenbauer工艺(K-Factor Garma)。其次,来自K因子Garma模型的残差已被用作条件差异的代理。使用两种不同的方法预测这些残差。在第一种方法中,局部线性小波神经网络模型(LLWNN)已开发出使用两种不同的学习算法预测条件方差,因此我们估计基于混合的K-因子Garma-llwnn基于基于的基于基于的基于基于的karma-llwnn算法(BP)算法和基于基于的粒子SWARM SWARM SWARM SWARM优化(PSO)算法。在第二种方法中,已经采用了Gegenbauer广义自动回归有条件的异质性过程(G-Garch),并且已经使用基于离散小波包装转换(DWPT)方法的波浪方法估算了K-Factor Garch-Garch模型的参数。为了说明我们方法的有用性,我们使用NORD Pool Market的电价小时回报进行了经验应用。经验结果表明,就预测标准而言,K因子Garma-G-Garch模型具有最佳的预测准确性,并且发现这更适合于预测。
In this paper, dual generalized long memory modelling has been proposed to predict the electricity spot price. First, we focus on modelling the conditional mean of the series so we adopt a generalized fractional k-factor Gegenbauer process ( k-factor GARMA). Secondly, the residual from the k-factor GARMA model has been used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using two different learning algorithms, so we estimate the hybrid k- factor GARMA-LLWNN based backpropagation (BP) algorithm and based particle swarm optimization (PSO) algorithm. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has been adopted, and the parameters of the k-factor GARMAG- GARCH model have been estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. To illustrate the usefulness of our methodology, we carry out an empirical application using the hourly returns of electricity prices from the Nord Pool market. The empirical results have shown that the k-factor GARMA-G-GARCH model has the best prediction accuracy in terms of forecasting criteria, and find that this is more appropriate for forecasts.