论文标题
最小的大理论理论中的静态和球形对称的一般相对论解决方案
Static and spherically symmetric general relativity solutions in Minimal Theory of Bigravity
论文作者
论文摘要
我们研究了最低限度理论(MTBG)中的静态和球面对称解。首先,我们表明,一对Schwarzschild-De保姆空间具有不同的宇宙学常数,并在空间上写的Gullstrand-Painlevé(GP)坐标书写的黑洞质量和黑洞质量是MTBG自动加速分支中的解决方案,而不是在正常分支中的解决方案。然后,我们说明Schwarzschild-De Sitter解决方案在使用不同的坐标时如何与正常分支兼容。我们还确认,MTBG的自加加速分支在空间上坐标中写入的物质,包括具有任意状态的中子星。最后,我们表明,在自动加速分支中,非平凡的解决方案是由施瓦茨柴尔兹德·德·保姆在非标准坐标中编写的。
We investigate static and spherically symmetric solutions in the Minimal Theory of Bigravity (MTBG). First, we show that a pair of Schwarzschild-de Sitter spacetimes with different cosmological constants and black hole masses written in the spatially-flat Gullstrand-Painlevé (GP) coordinates is a solution in the self-accelerating branch of MTBG, while it cannot be a solution in the normal branch. We then illustrate how Schwarzschild-de Sitter solutions can become compatible with the normal branch when using different coordinates. We also confirm that the self-accelerating branch of MTBG admits static and spherically symmetric general relativity solutions with matter written in the spatially-flat coordinates, including neutron stars with arbitrary matter equations of state. Finally, we show that in the self-accelerating branch nontrivial solutions are given by the Schwarzschild-de Sitter metrics written in nonstandard coordinates.