论文标题

动物王国:一个大而多样的数据集用于动物行为理解

Animal Kingdom: A Large and Diverse Dataset for Animal Behavior Understanding

论文作者

Ng, Xun Long, Ong, Kian Eng, Zheng, Qichen, Ni, Yun, Yeo, Si Yong, Liu, Jun

论文摘要

了解动物的行为对于广泛的应用非常重要。但是,现有的动物行为数据集在多个方面存在局限性,包括动物类别,数据样本和提供的任务,以及环境条件和观点的差异有限。为了解决这些局限性,我们创建了一个大型多样的数据集,即动物王国,该数据集提供了多个带注释的任务,以更彻底地了解自然动物行为。我们数据集中使用的野生动物镜头记录了一天中的不同时间,其中包含背景,观点,照明和天气状况的各种环境。更具体地说,我们的数据集包含50个小时的带注释的视频,可以在长视频中定位相关的动物行为段,以进行视频接地任务,30k视频序列,用于精细粒度的多标签动作识别任务以及姿势估计任务的33K帧,该任务与6种跨6个主要动物的动物相对应。这样一个具有挑战性且全面的数据集应能够促进社区发展,适应和评估各种动物行为分析的高级方法。此外,我们提出了一个协作行动识别模型(CARE)模型,该模型可以学习一般的和特定的特征,以识别不见的新动物。这种方法在我们的实验中实现了有希望的表现。我们的数据集可在https://sutdcv.github.io/animal-kingdom上找到。

Understanding animals' behaviors is significant for a wide range of applications. However, existing animal behavior datasets have limitations in multiple aspects, including limited numbers of animal classes, data samples and provided tasks, and also limited variations in environmental conditions and viewpoints. To address these limitations, we create a large and diverse dataset, Animal Kingdom, that provides multiple annotated tasks to enable a more thorough understanding of natural animal behaviors. The wild animal footages used in our dataset record different times of the day in extensive range of environments containing variations in backgrounds, viewpoints, illumination and weather conditions. More specifically, our dataset contains 50 hours of annotated videos to localize relevant animal behavior segments in long videos for the video grounding task, 30K video sequences for the fine-grained multi-label action recognition task, and 33K frames for the pose estimation task, which correspond to a diverse range of animals with 850 species across 6 major animal classes. Such a challenging and comprehensive dataset shall be able to facilitate the community to develop, adapt, and evaluate various types of advanced methods for animal behavior analysis. Moreover, we propose a Collaborative Action Recognition (CARe) model that learns general and specific features for action recognition with unseen new animals. This method achieves promising performance in our experiments. Our dataset can be found at https://sutdcv.github.io/Animal-Kingdom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源