论文标题

与自动并行监督的非平行文本样式转移

Non-Parallel Text Style Transfer with Self-Parallel Supervision

论文作者

Liu, Ruibo, Gao, Chongyang, Jia, Chenyan, Xu, Guangxuan, Vosoughi, Soroush

论文摘要

现有文本样式传输模型的性能受到训练模型的非平行数据集的严重限制。在非并行数据集中,源和目标样式的句子之间不存在直接映射。因此,样式转移模型仅在训练过程中得到对目标句子的弱监督,这通常会导致该模型丢弃过多的样式独立的信息,或者完全无法转移样式。在这项工作中,我们提出了Lamer,这是一种基于大规模语言模型的新型文本样式转移框架。 Lamer首先使用场景图中的非平行数据集中大致平行表达式,然后采用MLE训练,然后进行模仿学习改进,以利用数据中的内在并行性。在两项基准任务(情感和形式转移)和一项新提出的挑战任务(政治立场转移)上,我们的模型在转移准确性,内容保存和流利度方面取得了定性的进步。进一步的经验和人类评估表明,我们的模型不仅使训练更有效,而且还产生了比以前的模型更具可读性和不同表达方式。

The performance of existing text style transfer models is severely limited by the non-parallel datasets on which the models are trained. In non-parallel datasets, no direct mapping exists between sentences of the source and target style; the style transfer models thus only receive weak supervision of the target sentences during training, which often leads the model to discard too much style-independent information, or utterly fail to transfer the style. In this work, we propose LaMer, a novel text style transfer framework based on large-scale language models. LaMer first mines the roughly parallel expressions in the non-parallel datasets with scene graphs, and then employs MLE training, followed by imitation learning refinement, to leverage the intrinsic parallelism within the data. On two benchmark tasks (sentiment & formality transfer) and a newly proposed challenging task (political stance transfer), our model achieves qualitative advances in transfer accuracy, content preservation, and fluency. Further empirical and human evaluations demonstrate that our model not only makes training more efficient, but also generates more readable and diverse expressions than previous models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源