论文标题
多极不变和重力辐射的偏心率增强功能参数化
Multipolar invariants and the eccentricity enhancement function parametrization of gravitational radiation
论文作者
论文摘要
引力辐射可以分解为无限的辐射多产力矩,该总和可参数无穷大的波形。多极点 - 素科斯基形式主义提供了这些多物与源多极矩的连接,即在物质源上被称为显式积分。然后将重力波能,角动量和线性动量通量表示为多极膨胀,其中包含源矩的某些组合。我们计算几个量规不变的量为“构建块”,通过在超质运动运动的情况下,在2.5后纽顿后(Newton)(PN)的准确性水平上同时进入辐射能量和角动量的多极膨胀,通过通过计算到分数为1pn阶的尾声效应来完成先前的研究。我们从某些偏心率增强因子函数方面表达了这种多极不变的,这些功能是文献中已经引入的椭圆形运动中已经引入的众所周知的增强功能的对应物。最后,我们使用完整的2.5pn精确平均能量和角动量通量来研究重力辐射反应下轨道元件的绝热演化。
Gravitational radiation can be decomposed as an infinite sum of radiative multipole moments, which parametrize the waveform at infinity. The multipolar-post-Minkowskian formalism provides a connection between these multipoles and the source multipole moments, known as explicit integrals over the matter source. The gravitational wave energy, angular momentum and linear momentum fluxes are then expressed as multipolar expansions containing certain combinations of the source moments. We compute several gauge-invariant quantities as "building blocks" entering the multipolar expansion of both radiated energy and angular momentum at the 2.5 post-Newtonian (PN) level of accuracy in the case of hyperboliclike motion, by completing previous studies through the calculation of tail effects up to the fractional 1PN order. We express such multipolar invariants in terms of certain eccentricity enhancement factor functions, which are the counterpart of the well known enhancement functions already introduced in the literature for ellipticlike motion. Finally, we use the complete 2.5PN-accurate averaged energy and angular momentum fluxes to study the associated adiabatic evolution of orbital elements under gravitational radiation reaction.