论文标题
在两个显着的保护区域同构中
On two remarkable groups of area-preserving homeomorphisms
论文作者
论文摘要
我们证明,在一个符合性的球体上,在OH和Müller的意义上,哈密顿的同构同构是一个适当的正常亚组,这是有限的能量汉密尔顿同构同构的适当亚组。此外,我们在这些群体的商店内发现了无限型伪伪金属中的无限维平地。
We prove that on a symplectic sphere, the group of Hamiltonian homeomorphisms in the sense of Oh and Müller is a proper normal subgroup of the group of finite energy Hamiltonian homeomorphisms. Moreover we detect infinite-dimensional flats inside the quotient of these groups endowed with the natural Hofer pseudo-metric.