论文标题
AFSC:自适应傅立叶空间压缩以进行异常检测
AFSC: Adaptive Fourier Space Compression for Anomaly Detection
论文作者
论文摘要
医学图像上的异常检测(AD)使模型能够识别任何类型的异常模式,而无需特定病变的监督学习。基于数据增强的方法通过对真正健康的病变“粘贴”假病变来构建伪健康图像,并且对网络进行了培训,可以以有监督的方式预测健康的图像。病变可以通过不健康的输入和伪健康输出之间的差异找到。但是,仅使用手动设计的假病变无法近似于不规则的实际病变,因此限制了模型的概括。我们假设通过探索图像中的固有数据属性,我们可以在不健康的图像中区分以前看不见的病变与健康区域。在这项研究中,我们提出了一个自适应傅里叶空间压缩(AFSC)模块,以提炼健康功能。频域中大小和相位的压缩解决了病变的高强度和不同位置。 BRAT和MS-SEG数据集的实验结果表明,AFSC基线能够产生有希望的检测结果,并且AFSC模块可以有效地嵌入现有的AD方法中。
Anomaly Detection (AD) on medical images enables a model to recognize any type of anomaly pattern without lesion-specific supervised learning. Data augmentation based methods construct pseudo-healthy images by "pasting" fake lesions on real healthy ones, and a network is trained to predict healthy images in a supervised manner. The lesion can be found by difference between the unhealthy input and pseudo-healthy output. However, using only manually designed fake lesions fail to approximate to irregular real lesions, hence limiting the model generalization. We assume by exploring the intrinsic data property within images, we can distinguish previously unseen lesions from healthy regions in an unhealthy image. In this study, we propose an Adaptive Fourier Space Compression (AFSC) module to distill healthy feature for AD. The compression of both magnitude and phase in frequency domain addresses the hyper intensity and diverse position of lesions. Experimental results on the BraTS and MS-SEG datasets demonstrate an AFSC baseline is able to produce promising detection results, and an AFSC module can be effectively embedded into existing AD methods.