论文标题
基于逐框车辆检测的空中视频的大规模轨迹匹配和构造
Massive Trajectory Matching and Construction from Aerial Videos based on Frame-by-Frame Vehicle Detections
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Vehicle trajectory data provides critical information for traffic flow modeling and analysis. Unmanned aerial vehicles (UAV) is an emerging technology for traffic data collection because of its flexibility and diversity on spatial and temporal coverage. Vehicle trajectories are constructed from frame-by-frame detections. The increase of vehicle counts makes multiple-target matching more challenging. Errors are caused by pixel jitter, vehicle shadows, road marks as well as some missing detections. This research proposes a novel framework for construction of massive vehicle trajectories from aerial videos by matching vehicle detections based on traffic flow dynamic features. The You Look Only Once (YOLO) v4 is used for vehicle detection in UAV videos based on Convolution Neural Network (CNN). Trajectory construction is proposed in detected bounding boxes with trajectory identification, integrity enhancement, and coordinate transformation from image coordinates to the Frenet coordinates. The raw trajectory obtained is then denoised by the ensemble empirical mode decomposition (EEMD). Our framework is tested on two aerial videos taken by a UAV on city expressway covering congested and free-flow traffic conditions. The results show that the proposed framework achieves a Recall of 93.00% and 86.69%, and a Precision of 98.86% and 98.83% for vehicle trajectories in the free-flow and congested traffic conditions.The trajectory processing speed is about 30s per track.