论文标题
部分可观测时空混沌系统的无模型预测
Flowfield prediction of airfoil off-design conditions based on a modified variational autoencoder
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Airfoil aerodynamic optimization based on single-point design may lead to poor off-design behaviors. Multipoint optimization that considers the off-design flow conditions is usually applied to improve the robustness and expand the flight envelope. Many deep learning models have been utilized for the rapid prediction or reconstruction of flowfields. However, the flowfield reconstruction accuracy may be insufficient for cruise efficiency optimization, and the model generalization ability is also questionable when facing airfoils different from the airfoils with which the model has been trained. Because a computational fluid dynamic evaluation of the cruise condition is usually necessary and affordable in industrial design, a novel deep learning framework is proposed to utilize the cruise flowfield as a prior reference for the off-design condition prediction. A prior variational autoencoder is developed to extract features from the cruise flowfield and to generate new flowfields under other free stream conditions. Physical-based loss functions based on aerodynamic force and conservation of mass are derived to minimize the prediction error of the flowfield reconstruction. The results demonstrate that the proposed model can reduce the prediction error on test airfoils by 30% compared to traditional models. The physical-based loss function can further reduce the prediction error by 4%. The proposed model illustrates a better balance of the time cost and the fidelity requirements of evaluation for cruise and off-design conditions, which makes the model more feasible for industrial applications.