论文标题

部分可观测时空混沌系统的无模型预测

Precise Indoor Positioning Based on UWB and Deep Learning

论文作者

Wang, Chenyu, Lin, Zihuai

论文摘要

我们在这项工作中与指纹技术一起检查了基于UWB的室内位置。我们在UWB室内定位系统的测量距离和实际距离之间建立了连接。该连接用于生成一个可用于生成Fringerprints的距离数据库。我们创建了一个BP神经网络,使用距离数据库将目标节点分类为相关的Fringerpint。与现有的三尾系统相比,我们建议的深度学习技术大大提高了位置的准确性。

We examined UWB-based indoor location in conjunction with a fingerprint technique in this work. We built a connection between the measured and real distances for the UWB indoor positioning system. This connection is used to produce a distance database that may be used to generate fringerprints. We created a BP neural network to classify the target node to the relevant fringerpint using the distance database. Our suggested deep learning technology considerably enhances location accuracy when compared to existing trilateration systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源