论文标题

部分可观测时空混沌系统的无模型预测

GHM Wavelet Transform for Deep Image Super Resolution

论文作者

Lowe, Ben, Salman, Hadi, Zhan, Justin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The GHM multi-level discrete wavelet transform is proposed as preprocessing for image super resolution with convolutional neural networks. Previous works perform analysis with the Haar wavelet only. In this work, 37 single-level wavelets are experimentally analyzed from Haar, Daubechies, Biorthogonal, Reverse Biorthogonal, Coiflets, and Symlets wavelet families. All single-level wavelets report similar results indicating that the convolutional neural network is invariant to choice of wavelet in a single-level filter approach. However, the GHM multi-level wavelet achieves higher quality reconstructions than the single-level wavelets. Three large data sets are used for the experiments: DIV2K, a dataset of textures, and a dataset of satellite images. The approximate high resolution images are compared using seven objective error measurements. A convolutional neural network based approach using wavelet transformed images has good results in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源