论文标题
部分可观测时空混沌系统的无模型预测
Traffic-Aware Mean-Field Power Allocation for Ultra-Dense NB-IoT Networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The Narrowband Internet of Things (NB-IoT) is a cellular technology introduced by the Third Generation Partnership Project (3GPP) to provide connectivity to a large number of low-cost IoT devices with strict energy consumption limitations. However, in an ultra-dense small cell network employing NB-IoT technology, inter-cell interference can be a problem, raising serious concerns regarding the performance of NB-IoT, particularly in uplink transmission. Thus, a power allocation method must be established to analyze uplink performance, control and predict inter-cell interference, and avoid excessive energy waste during transmission. Unfortunately, standard power allocation techniques become inappropriate as their computational complexity grows in an ultra-dense environment. Furthermore, the performance of NB-IoT is strongly dependent on the traffic generated by IoT devices. In order to tackle these challenges, we provide a consistent and distributed uplink power allocation solution under spatiotemporal fluctuation incorporating NB-IoT features such as the number of repetitions and the data rate, as well as the IoT device's energy budget, packet size, and traffic intensity, by leveraging stochastic geometry analysis and Mean-Field Game (MFG) theory. The effectiveness of our approach is illustrated via extensive numerical analysis, and many insightful discussions are presented.