论文标题

部分可观测时空混沌系统的无模型预测

The characterizing properties of (signless) Laplacian permanental polynomials of bicyclic graphs

论文作者

Wu, Tingzeng, Zhou, Tian

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $G$ be a graph with $n$ vertices, and let $L(G)$ and $Q(G)$ be the Laplacian matrix and signless Laplacian matrix of $G$, respectively. The polynomial $π(L(G);x)={\rm per}(xI-L(G))$ (resp. $π(Q(G);x)={\rm per}(xI-Q(G))$) is called {\em Laplacian permanental polynomial} (resp. {\em signless Laplacian permanental polynomial}) of $G$. In this paper, we show that two classes of bicyclic graphs are determined by their (signless) Laplacian permanental polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源