论文标题
部分可观测时空混沌系统的无模型预测
Sequential discretisation schemes for a class of stochastic differential equations and their application to Bayesian filtering
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We introduce a predictor-corrector discretisation scheme for the numerical integration of a class of stochastic differential equations and prove that it converges with weak order 1.0. The key feature of the new scheme is that it builds up sequentially (and recursively) in the dimension of the state space of the solution, hence making it suitable for approximations of high-dimensional state space models. We show, using the stochastic Lorenz 96 system as a test model, that the proposed method can operate with larger time steps than the standard Euler-Maruyama scheme and, therefore, generate valid approximations with a smaller computational cost. We also introduce the theoretical analysis of the error incurred by the new predictor-corrector scheme when used as a building block for discrete-time Bayesian filters for continuous-time systems. Finally, we assess the performance of several ensemble Kalman filters that incorporate the proposed sequential predictor-corrector Euler scheme and the standard Euler-Maruyama method. The numerical experiments show that the filters employing the new sequential scheme can operate with larger time steps, smaller Monte Carlo ensembles and noisier systems.