论文标题
机器学习教程用于操作气象学,第一部分:传统机器学习
A Machine Learning Tutorial for Operational Meteorology, Part I: Traditional Machine Learning
论文作者
论文摘要
最近,在气象学中使用机器学习大大增加了。尽管许多机器学习方法并不是什么新鲜事物,但有关机器学习的大学课程在很大程度上是气象学专业的学生,不需要成为气象学家。缺乏正式教学导致人们认为机器学习方法是“黑匣子”,因此最终用户犹豫不决地将机器学习方法应用于每天的工作流程。为了减少机器学习方法的不透明性,并降低了对气象学中机器学习的犹豫,本文对一些最常见的机器学习方法进行了调查。一个熟悉的气象示例用于将机器学习方法的上下文化,同时还使用普通语言讨论机器学习主题。证明了以下机器学习方法:线性回归;逻辑回归;决策树;随机森林;梯度增强了决策树;天真的贝叶斯;并支持向量机。除了讨论不同的方法之外,本文还包含有关一般机器学习过程的讨论以及最佳实践,以使读者能够将机器学习应用于自己的数据集。此外,所有代码(以Jupyter笔记本和Google合同的笔记本的形式)用于在论文中进行示例,以促进气象学中的机器学习使用。
Recently, the use of machine learning in meteorology has increased greatly. While many machine learning methods are not new, university classes on machine learning are largely unavailable to meteorology students and are not required to become a meteorologist. The lack of formal instruction has contributed to perception that machine learning methods are 'black boxes' and thus end-users are hesitant to apply the machine learning methods in their every day workflow. To reduce the opaqueness of machine learning methods and lower hesitancy towards machine learning in meteorology, this paper provides a survey of some of the most common machine learning methods. A familiar meteorological example is used to contextualize the machine learning methods while also discussing machine learning topics using plain language. The following machine learning methods are demonstrated: linear regression; logistic regression; decision trees; random forest; gradient boosted decision trees; naive Bayes; and support vector machines. Beyond discussing the different methods, the paper also contains discussions on the general machine learning process as well as best practices to enable readers to apply machine learning to their own datasets. Furthermore, all code (in the form of Jupyter notebooks and Google Colaboratory notebooks) used to make the examples in the paper is provided in an effort to catalyse the use of machine learning in meteorology.