论文标题

图形神经网络的图池:进步,挑战和机遇

Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities

论文作者

Liu, Chuang, Zhan, Yibing, Wu, Jia, Li, Chang, Du, Bo, Hu, Wenbin, Liu, Tongliang, Tao, Dacheng

论文摘要

图形神经网络已成为许多图形级任务(例如图形分类和图形生成)的领先体系结构。作为体系结构的重要组成部分,图形合并对于获得整个图的整体图形表示是必不可少的。尽管在这个有希望的快速发展的研究领域中提出了各种各样的方法,但据我们所知,几乎没有努力系统地总结这些作品。为了为未来作品的发展奠定阶段,在本文中,我们试图通过对最新图形池方法的广泛审查来填补这一空白。具体而言,1)我们首先提出了现有的图形合并方法的分类法,并针对每个类别进行数学摘要; 2)然后,我们提供了与图形池相关的库的概述,包括常用的数据集,用于下游任务的模型体系结构以及开源实现; 3)接下来,我们进一步概述了将图形合并概念汇总在各种域中的应用程序; 4)最后,我们讨论了当前研究面临的某些关键挑战,并分享了我们对未来潜在方向的见解,以研究改进图池。

Graph neural networks have emerged as a leading architecture for many graph-level tasks, such as graph classification and graph generation. As an essential component of the architecture, graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph. Although a great variety of methods have been proposed in this promising and fast-developing research field, to the best of our knowledge, little effort has been made to systematically summarize these works. To set the stage for the development of future works, in this paper, we attempt to fill this gap by providing a broad review of recent methods for graph pooling. Specifically, 1) we first propose a taxonomy of existing graph pooling methods with a mathematical summary for each category; 2) then, we provide an overview of the libraries related to graph pooling, including the commonly used datasets, model architectures for downstream tasks, and open-source implementations; 3) next, we further outline the applications that incorporate the idea of graph pooling in a variety of domains; 4) finally, we discuss certain critical challenges facing current studies and share our insights on future potential directions for research on the improvement of graph pooling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源