论文标题

非平衡稳态和线性代数系统的量子梯度下降算法

Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems

论文作者

Liang, Jin-Min, Wei, Shi-Jie, Fei, Shao-Ming

论文摘要

梯度下降方法是各种量子算法和机器学习任务中的关键成分,这是用于查找目标函数的局部最小值的优化算法。梯度下降的量子版本已在计算分子接地态和优化多项式函数方面进行了研究和实施。基于量子梯度下降算法和choi-jamiolkowski同构,我们提出了有效模拟马尔可夫开放量子多体系统的非平衡稳态的方法。开发了两种策略来评估在非平衡稳态上物理可观察物的期望值。此外,我们通过将这些代数问题转换为具有明确定义的汉密尔顿人的封闭量子系统的模拟,使量子梯度下降算法求解了线性代数问题,包括方程式和矩阵矢量乘法。给出了详细的示例,以数值测试对耗散量子横向ISING模型和矩阵矢量乘法的算法的有效性。

The gradient descent approach is the key ingredient in variational quantum algorithms and machine learning tasks, which is an optimization algorithm for finding a local minimum of an objective function. The quantum versions of gradient descent have been investigated and implemented in calculating molecular ground states and optimizing polynomial functions. Based on the quantum gradient descent algorithm and Choi-Jamiolkowski isomorphism, we present approaches to simulate efficiently the nonequilibrium steady states of Markovian open quantum many-body systems. Two strategies are developed to evaluate the expectation values of physical observables on the nonequilibrium steady states. Moreover, we adapt the quantum gradient descent algorithm to solve linear algebra problems including linear systems of equations and matrix-vector multiplications, by converting these algebraic problems into the simulations of closed quantum systems with well-defined Hamiltonians. Detailed examples are given to test numerically the effectiveness of the proposed algorithms for the dissipative quantum transverse Ising models and matrix-vector multiplications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源