论文标题
声波系统中的隐藏对称性
Hidden symmetries in acoustic wave systems
论文作者
论文摘要
波系统的镜像对称对应于其本征模量。对于离散系统,特定站点子集上的本征奇偶校验也可能起源于所谓的潜在对称性。这种对称性是隐藏的,但是可以在将原始系统还原到潜在的对称位点后在有效模型中揭示。在这里,我们展示了如何以声学网络的形式利用潜在的对称性。这些是系统地设计的,以在所有低频本本征元素的选定波导连接之间具有点振幅奇偶校验。我们进一步开发了一个模块化原理:可以将潜在的对称网络互连以具有多个潜在的对称交界对,从而设计了任意大型的潜在对称网络。通过将此类网络连接到镜像对称子系统,我们设计了具有特征模型的不对称设置。弥合离散模型和连续模型之间的差距,我们的工作朝着在现实的波浪设置中利用隐藏的几何对称性迈出了关键的一步。
Mirror symmetry of a wave system imposes corresponding even or odd parity on its eigenmodes. For a discrete system, eigenmode parity on a specific subset of sites may also originate from so-called latent symmetry. This symmetry is hidden, but can be revealed in an effective model upon reduction of the original system onto the latently symmetric sites. Here we show how latent symmetries can be leveraged for continuous wave setups in the form of acoustic networks. These are systematically designed to have point-wise amplitude parity between selected waveguide junctions for all low frequency eigenmodes. We further develop a modular principle: latently symmetric networks can be interconnected to feature multiple latently symmetric junction pairs, allowing the design of arbitrarily large latently symmetric networks. By connecting such networks to a mirror symmetric subsystem, we design asymmetric setups featuring eigenmodes with domain-wise parity. Bridging the gap between discrete and continuous models, our work takes a pivotal step towards exploiting hidden geometrical symmetries in realistic wave setups.