论文标题
跨频耦合增加了振荡神经网络中的记忆能力
Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural Networks
论文作者
论文摘要
神经科学中的一个开放问题是解释振荡在神经网络中的功能作用,例如,促进感知,注意力和记忆。跨频耦合(CFC)与神经元种群之间的信息积分有关。 CFC受损与神经系统疾病有关。目前尚不清楚CFC在信息处理和大脑功能连接性中的作用。我们构建了CFC的模型,该模型预测了海马和皮质中观察到的$θ-γ$振荡电路的计算作用。我们的模型预测,耦合振荡器的复发和前馈网络中的复杂动力学可执行强大的信息存储和模式检索。基于相量关联记忆(PAM),我们提出了一种新型的振荡器神经网络(ONN)模型,其中包括亚谐波注射锁定(SHIL),并重现了CFC的实验观察结果。我们表明,CFC的存在增加了由塑料突触连接的神经元种群的记忆能力。 CFC启用了无错误的图案检索,而模式检索在没有CFC的情况下会失败。此外,确定连通性,容量和每个连接信息之间的权衡。关联记忆基于复杂值的神经网络或相思神经网络(PNN)。我们表明,对于$ Q $的值,与$γ$与$γ$与$θ$振荡的比率相同,在海马和皮层中观察到的比率相比,关联存储器可实现比以前的模型更大的容量和信息存储。这项工作的新贡献是基于振荡器动力学的计算框架,该动力学预测了神经振荡的功能以及在神经网络理论和动态系统理论中的概念的功能作用。
An open problem in neuroscience is to explain the functional role of oscillations in neural networks, contributing, for example, to perception, attention, and memory. Cross-frequency coupling (CFC) is associated with information integration across populations of neurons. Impaired CFC is linked to neurological disease. It is unclear what role CFC has in information processing and brain functional connectivity. We construct a model of CFC which predicts a computational role for observed $θ- γ$ oscillatory circuits in the hippocampus and cortex. Our model predicts that the complex dynamics in recurrent and feedforward networks of coupled oscillators performs robust information storage and pattern retrieval. Based on phasor associative memories (PAM), we present a novel oscillator neural network (ONN) model that includes subharmonic injection locking (SHIL) and which reproduces experimental observations of CFC. We show that the presence of CFC increases the memory capacity of a population of neurons connected by plastic synapses. CFC enables error-free pattern retrieval whereas pattern retrieval fails without CFC. In addition, the trade-offs between sparse connectivity, capacity, and information per connection are identified. The associative memory is based on a complex-valued neural network, or phasor neural network (PNN). We show that for values of $Q$ which are the same as the ratio of $γ$ to $θ$ oscillations observed in the hippocampus and the cortex, the associative memory achieves greater capacity and information storage than previous models. The novel contributions of this work are providing a computational framework based on oscillator dynamics which predicts the functional role of neural oscillations and connecting concepts in neural network theory and dynamical system theory.