论文标题
快速贝叶斯分析脉冲星时阵列中的单个二进制文件
Fast Bayesian analysis of individual binaries in pulsar timing array data
论文作者
论文摘要
在脉冲星时阵列数据中搜索引力波在计算上是密集型的。数据进行了不均匀的采样,并且噪声是异质的,因此需要使用昂贵的矩阵操作使用时间域的可能性功能。当搜索单个超质量黑洞二进制文件时,计算成本会加剧,由于每个PULSAR所需的额外的PULSAR距离,相位偏移和噪声模型参数,因此具有较大的参数空间。我们引入了一种可能性功能的新公式,可用于使贝叶斯分析的速度明显更快。我们将参数分为投影和形状参数。然后,我们通过预先计算每组形状参数的昂贵内部产品来加速投影参数的探索。投影参数包括滋扰参数,例如每个脉冲星的重力波相位偏移。在新方案中,这些麻烦的麻烦参数在使用多尝试的马尔可夫链蒙特卡洛采样方面有效地边缘化了,这是大都会 - 吉布斯方案的一部分。随着Pulsar正时数据集迅速增长,我们方法提供的加速度将变得越来越重要。我们的方法还使复杂的分析更具处理方式,例如搜索多种二进制文件,或具有不可忽视的偏心率的二进制文件。
Searching for gravitational waves in pulsar timing array data is computationally intensive. The data is unevenly sampled, and the noise is heteroscedastic, necessitating the use of a time-domain likelihood function with attendant expensive matrix operations. The computational cost is exacerbated when searching for individual supermassive black hole binaries, which have a large parameter space due to the additional pulsar distance, phase offset and noise model parameters needed for each pulsar. We introduce a new formulation of the likelihood function which can be used to make the Bayesian analysis significantly faster. We divide the parameters into projection and shape parameters. We then accelerate the exploration of the projection parameters by more than four orders of magnitude by precomputing the expensive inner products for each set of shape parameters. The projection parameters include nuisance parameters such as the gravitational wave phase offset at each pulsar. In the new scheme, these troublesome nuisance parameters are efficiently marginalized over using multiple-try Markov chain Monte Carlo sampling as part of a Metropolis-within-Gibbs scheme. The acceleration provided by our method will become increasingly important as pulsar timing datasets rapidly grow. Our method also makes sophisticated analyses more tractable, such as searches for multiple binaries, or binaries with non-negligible eccentricities.