论文标题
使用基于得分的生成模型的MIMO通道估计
MIMO Channel Estimation using Score-Based Generative Models
论文作者
论文摘要
频道估计是多输入多输出(MIMO)数字通信的关键任务,该任务实质上会影响端到端系统性能。在这项工作中,我们介绍了一种新型的方法,使用基于分数的生成模型进行渠道估计。对模型进行了训练,以估计分布对数的梯度,并在给定信号测量的情况下迭代完善估计。我们为基于无线MIMO通道的基于训练得分的生成模型介绍了一个框架,并根据测试时间后采样执行通道估计。我们得出理论鲁棒性可确保通道估计,并在单输入单输出方案中进行后验采样,并在MIMO设置中实验验证性能。我们在模拟渠道中的结果表明,与监督的深度学习方法相比,在端到端编码的端到端编码沟通性能高达$ 5 $ db的竞争性表现和强劲的分发性能。对飞行员数量的模拟显示,对于MIMO频道的尺寸最高为64美元\ times 256 $,可以使用25美元的飞行员密度为$ 25 $%。复杂性分析表明,模型大小可以为估计潜伏期有效贸易绩效,并且所提出的方法在浮点操作(FLOP)计数方面具有竞争力,具有压缩感。
Channel estimation is a critical task in multiple-input multiple-output (MIMO) digital communications that substantially effects end-to-end system performance. In this work, we introduce a novel approach for channel estimation using deep score-based generative models. A model is trained to estimate the gradient of the logarithm of a distribution and is used to iteratively refine estimates given measurements of a signal. We introduce a framework for training score-based generative models for wireless MIMO channels and performing channel estimation based on posterior sampling at test time. We derive theoretical robustness guarantees for channel estimation with posterior sampling in single-input single-output scenarios, and experimentally verify performance in the MIMO setting. Our results in simulated channels show competitive in-distribution performance, and robust out-of-distribution performance, with gains of up to $5$ dB in end-to-end coded communication performance compared to supervised deep learning methods. Simulations on the number of pilots show that high fidelity channel estimation with $25$% pilot density is possible for MIMO channel sizes of up to $64 \times 256$. Complexity analysis reveals that model size can efficiently trade performance for estimation latency, and that the proposed approach is competitive with compressed sensing in terms of floating-point operation (FLOP) count.