论文标题

通过迭代自我训练的机器人垃圾箱,SIM到现实的6D对象姿势效果估计

Sim-to-Real 6D Object Pose Estimation via Iterative Self-training for Robotic Bin Picking

论文作者

Chen, Kai, Cao, Rui, James, Stephen, Li, Yichuan, Liu, Yun-Hui, Abbeel, Pieter, Dou, Qi

论文摘要

在本文中,我们提出了一个迭代的自我训练框架,以估算SIM到现实的6D对象姿势,以促进具有成本效益的机器人握把。在给定bin选择的情况下,我们建立了一个光真实的模拟器来综合大量的虚拟数据,并使用它来训练初始姿势估计网络。然后,该网络扮演教师模型的角色,该模型为未标记的真实数据生成了姿势预测。通过这些预测,我们进一步设计了一个全面的自适应选择方案,以区分可靠的结果,并将其作为伪标签来更新学生模型以估算真实数据。为了不断提高伪标签的质量,我们通过将经过训练的学生模型作为新教师并使用精致的教师模型重新标记实际数据来迭代上述步骤。我们在公共基准和新发布的数据集上评估了我们的方法,分别提高了11.49%和22.62%的方法。我们的方法还能够将机器人箱的成功成功提高19.54%,这表明了对机器人应用的迭代SIM到现实解决方案的潜力。

In this paper, we propose an iterative self-training framework for sim-to-real 6D object pose estimation to facilitate cost-effective robotic grasping. Given a bin-picking scenario, we establish a photo-realistic simulator to synthesize abundant virtual data, and use this to train an initial pose estimation network. This network then takes the role of a teacher model, which generates pose predictions for unlabeled real data. With these predictions, we further design a comprehensive adaptive selection scheme to distinguish reliable results, and leverage them as pseudo labels to update a student model for pose estimation on real data. To continuously improve the quality of pseudo labels, we iterate the above steps by taking the trained student model as a new teacher and re-label real data using the refined teacher model. We evaluate our method on a public benchmark and our newly-released dataset, achieving an ADD(-S) improvement of 11.49% and 22.62% respectively. Our method is also able to improve robotic bin-picking success by 19.54%, demonstrating the potential of iterative sim-to-real solutions for robotic applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源