论文标题
OMAD:用于物质和非固定用户的设备上的心理异常检测
OMAD: On-device Mental Anomaly Detection for Substance and Non-Substance Users
论文作者
论文摘要
在Covid-19期间,请待在家里有助于扁平曲线,但具有讽刺意味的是,在患有药物使用障碍的人中促进了心理健康问题。使用现成的消费者可穿戴设备(例如智能手表)来测量大脑中的电动活动信号,并实时绘制它们的基本情绪,行为和情感变化,在假设心理健康异常方面发挥了惊人的作用。在这项工作中,我们建议实施可穿戴的{\ IT设备心理异常检测(OMAD)}系统,以检测异常行为和活动,这些行为和活动导致精神健康问题并帮助临床医生设计有效的干预策略。我们提出了一个固有的肌电驱动模型(EEG)信号,以更好地相关联的行为变化。我们在伪影去除和活动识别(主要)模块上设计模型压缩技术。我们在卷积神经网络和多层感知中实施了基于大小的重量修剪技术,以在NVIDIA JETSON NANO上采用推理阶段。可穿戴设备最紧密的资源受限设备之一。我们尝试了特征提取和伪影方法的三种不同组合。我们使用来自控制和治疗组(酒精)组的EEG数据来评估{\ it OMAD}的性能,用于未经原始和压缩模型的准确性,F1分数,内存使用时间和运行时间,用于不同的对象识别任务。我们的工件去除模型和主要活动检测模型的达到了约$ \ $ 93 \%和90 \%的精度,模型大小(70 \%)和推理时间(31 \%)显着降低。
Stay at home order during the COVID-19 helps flatten the curve but ironically, instigate mental health problems among the people who have Substance Use Disorders. Measuring the electrical activity signals in brain using off-the-shelf consumer wearable devices such as smart wristwatch and mapping them in real time to underlying mood, behavioral and emotional changes play striking roles in postulating mental health anomalies. In this work, we propose to implement a wearable, {\it On-device Mental Anomaly Detection (OMAD)} system to detect anomalous behaviors and activities that render to mental health problems and help clinicians to design effective intervention strategies. We propose an intrinsic artifact removal model on Electroencephalogram (EEG) signal to better correlate the fine-grained behavioral changes. We design model compression technique on the artifact removal and activity recognition (main) modules. We implement a magnitude-based weight pruning technique both on convolutional neural network and Multilayer Perceptron to employ the inference phase on Nvidia Jetson Nano; one of the tightest resource-constrained devices for wearables. We experimented with three different combinations of feature extractions and artifact removal approaches. We evaluate the performance of {\it OMAD} in terms of accuracy, F1 score, memory usage and running time for both unpruned and compressed models using EEG data from both control and treatment (alcoholic) groups for different object recognition tasks. Our artifact removal model and main activity detection model achieved about $\approx$ 93\% and 90\% accuracy, respectively with significant reduction in model size (70\%) and inference time (31\%).