论文标题

无监督的深度学习遇到了Chan-Vese模型

Unsupervised Deep Learning Meets Chan-Vese Model

论文作者

Zheng, Dihan, Bao, Chenglong, Shi, Zuoqiang, Ling, Haibin, Ma, Kaisheng

论文摘要

Chan-Vese(CV)模型是图像分割的经典方法。但是,其分段恒定假设并不总是适用于实际应用。已经提出了许多改进,但问题尚未得到很好的解决。在这项工作中,我们提出了一种无监督的图像分割方法,该方法将CV模型与深神经网络集成在一起,从而显着提高了原始CV模型的分割精度。我们的基本思想是应用深度神经网络,将图像映射到潜在空间中,以减轻对图像空间中分段不变假设的侵犯。我们在经典的贝叶斯框架下通过近似可能的可能性(ELBO)术语近似可能的可能性,同时将先前的术语保留在CV模型中,从而提出这一想法。因此,我们的模型只需要输入图像本身,并且不需要外部数据集的预训练。此外,我们将这个想法扩展到基于多相的情况和基于数据集的无监督图像分割。广泛的实验验证了我们的模型的有效性,并表明所提出的方法明显比其他无监督分割方法更好。

The Chan-Vese (CV) model is a classic region-based method in image segmentation. However, its piecewise constant assumption does not always hold for practical applications. Many improvements have been proposed but the issue is still far from well solved. In this work, we propose an unsupervised image segmentation approach that integrates the CV model with deep neural networks, which significantly improves the original CV model's segmentation accuracy. Our basic idea is to apply a deep neural network that maps the image into a latent space to alleviate the violation of the piecewise constant assumption in image space. We formulate this idea under the classic Bayesian framework by approximating the likelihood with an evidence lower bound (ELBO) term while keeping the prior term in the CV model. Thus, our model only needs the input image itself and does not require pre-training from external datasets. Moreover, we extend the idea to multi-phase case and dataset based unsupervised image segmentation. Extensive experiments validate the effectiveness of our model and show that the proposed method is noticeably better than other unsupervised segmentation approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源