论文标题

部分可观测时空混沌系统的无模型预测

Combining First-Order Classical and Intuitionistic Logic

论文作者

Toyooka, Masanobu, Sano, Katsuhiko

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper studies a first-order expansion of a combination C+J of intuitionistic and classical propositional logic, which was studied by Humberstone (1979) and del Cerro and Herzig (1996), from a proof-theoretic viewpoint. While C+J has both classical and intuitionistic implications, our first-order expansion adds classical and intuitionistic universal quantifiers and one existential quantifier to C+J. This paper provides a multi-succedent sequent calculus G(FOC+J) for our combination of the first-order intuitionistic and classical logic. Our sequent calculus G(FOC+J) restricts contexts of the right rules for intuitionistic implication and intuitionistic universal quantifier to particular forms of formulas. The cut-elimination theorem is established to ensure the subformula property. As a corollary, G(FOC+J) is conservative over both first-order intuitionistic and classical logic. Strong completeness of G(FOC+J) is proved via a canonical model argument.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源