论文标题

部分可观测时空混沌系统的无模型预测

Normalization by Evaluation for the Lambek Calculus

论文作者

Veltri, Niccolò

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The syntactic calculus of Lambek is a deductive system for the multiplicative fragment of intuitionistic non-commutative linear logic. As a fine-grained calculus of resources, it has many applications, mostly in formal computational investigations of natural languages. This paper introduces a calculus of beta-eta-long normal forms for derivations in the Lambek calculus with multiplicative unit and conjunction among its logical connectives. Reduction to normal form follows the normalization by evaluation (NbE) strategy: (i) evaluate a derivation in a Kripke model of Lambek calculus; (ii) extract normal forms from the obtained semantic values. The implementation of the NbE algorithm requires the presence of a strong monad in the Kripke interpretation of positive formulae, in analogy with the extension of intuitionistic propositional logic with falsity and disjunction. The NbE algorithm can also be instantiated with minor variations to calculi for related substructural logics, such as multiplicative and dual intuitionistic linear logic (MILL and DILL).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源