论文标题

LSTM-AUTOENOCODER基于室内空气质量时间序列数据的异常检测

LSTM-Autoencoder based Anomaly Detection for Indoor Air Quality Time Series Data

论文作者

Wei, Yuanyuan, Jang-Jaccard, Julian, Xu, Wen, Sabrina, Fariza, Camtepe, Seyit, Boulic, Mikael

论文摘要

室内空气质量(IAQ)数据的异常检测已成为研究的重要领域,因为空气质量与人类健康和福祉密切相关。但是,在IAQ区域中,基于机器学习的传统统计和基于机器学习的方法无法检测到涉及几个数据点(即通常称为长期依赖性)相关性的异常情况。我们提出了一个混合深度学习模型,该模型将LSTM与自动编码器结合在一起,以解决IAQ中的异常检测任务,以解决此问题。在我们的方法中,LSTM网络由多个LSTM单元组成,这些LSTM细胞相互工作,以学习时间序列序列的长期依赖性。自动编码器根据所有时间序列序列的每个数据评估的重建损失率来识别最佳阈值。我们的实验结果基于通过新西兰学校的现实部署获得的Dunedin CO2时间序列数据集,其表现出了非常高且强大的精度率(99.50%),其表现优于其他类似模型。

Anomaly detection for indoor air quality (IAQ) data has become an important area of research as the quality of air is closely related to human health and well-being. However, traditional statistics and shallow machine learning-based approaches in anomaly detection in the IAQ area could not detect anomalies involving the observation of correlations across several data points (i.e., often referred to as long-term dependences). We propose a hybrid deep learning model that combines LSTM with Autoencoder for anomaly detection tasks in IAQ to address this issue. In our approach, the LSTM network is comprised of multiple LSTM cells that work with each other to learn the long-term dependences of the data in a time-series sequence. Autoencoder identifies the optimal threshold based on the reconstruction loss rates evaluated on every data across all time-series sequences. Our experimental results, based on the Dunedin CO2 time-series dataset obtained through a real-world deployment of the schools in New Zealand, demonstrate a very high and robust accuracy rate (99.50%) that outperforms other similar models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源