论文标题

GM-Tounn:使用神经网络的分级多尺寸拓扑优化

GM-TOuNN: Graded Multiscale Topology Optimization using Neural Networks

论文作者

Chandrasekhar, Aaditya, Sridhara, Saketh, Suresh, Krishnan

论文摘要

多尺寸拓扑优化(M-TO)需要生成最佳的全球拓扑,以及较小规模的最佳微观结构集,以解决物理受限的问题。随着增材制造的出现,M-To获得了显着的突出性。但是,在各个位置生成最佳的微观结构可能非常昂贵。作为替代方案,已经提出了一个或多个预选和分级(参数化的)微结构拓扑结构来最佳填充域,因此提出了一个或多个预选和分级(参数化的)微结构拓扑。这导致计算显着降低,同时保留了M-TO的许多好处。 成功的GM到框架必须:(1)能够有效处理众多预选的微观结构,(2)能够在优化过程中连续在这些微观结构之间进行连续切换,(3)确保满足统一的分配,并且(4)劝阻在终止时混合微观结构。 在本文中,我们建议通过利用神经网络的独特分类能力来满足这些要求。具体而言,我们使用神经网络(GM-TOUNN)框架提出了一个分级的多尺寸拓扑优化,具有以下特征:(1)设计变量的数量仅弱依赖于预选的微观结构的数量,(2)它可以保证在识别微观结构混合和(3)自动分析的同时,它可以保证求解的态度,以消除自动分析,从而消除了态度,而不是在此启动。通过几个示例说明了所提出的框架。

Multiscale topology optimization (M-TO) entails generating an optimal global topology, and an optimal set of microstructures at a smaller scale, for a physics-constrained problem. With the advent of additive manufacturing, M-TO has gained significant prominence. However, generating optimal microstructures at various locations can be computationally very expensive. As an alternate, graded multiscale topology optimization (GM-TO) has been proposed where one or more pre-selected and graded (parameterized) microstructural topologies are used to fill the domain optimally. This leads to a significant reduction in computation while retaining many of the benefits of M-TO. A successful GM-TO framework must: (1) be capable of efficiently handling numerous pre-selected microstructures, (2) be able to continuously switch between these microstructures during optimization, (3) ensure that the partition of unity is satisfied, and (4) discourage microstructure mixing at termination. In this paper, we propose to meet these requirements by exploiting the unique classification capacity of neural networks. Specifically, we propose a graded multiscale topology optimization using neural-network (GM-TOuNN) framework with the following features: (1) the number of design variables is only weakly dependent on the number of pre-selected microstructures, (2) it guarantees partition of unity while discouraging microstructure mixing, and (3) it supports automatic differentiation, thereby eliminating manual sensitivity analysis. The proposed framework is illustrated through several examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源