论文标题

使用模糊逻辑的最佳路径森林分类的​​新方法

A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic

论文作者

de Souza, Renato W. R., de Oliveira, João V. C., Passos, Leandro A., Ding, Weiping, Papa, João P., de Albuquerque, Victor Hugo C.

论文摘要

在过去的几十年中,模糊逻辑在许多研究领域发挥了重要作用。旁边是,基于图的模式识别非常重要,因为它在使用Graph Themey中的背景来对特征空间进行分配方面的灵活性。几年前,提出了一个新的,用于监督,半监督和无监督的学习,名为Optimal-Path Forest(OPF),除了构成低计算负担外,还提出了具有竞争性结果的竞争结果。在本文中,我们提出了模糊的最佳路径森林,这是标准OPF分类器的改进版本,该版本以无监督的方式学习样品的会员资格,在监督培训中进一步合并。此类信息用于确定最相关的培训样本,从而改善分类步骤。进行超过十二个公共数据集进行的实验突出了所提出方法的鲁棒性,在最坏情况下,该方法与标准OPF的行为相似。

In the past decades, fuzzy logic has played an essential role in many research areas. Alongside, graph-based pattern recognition has shown to be of great importance due to its flexibility in partitioning the feature space using the background from graph theory. Some years ago, a new framework for both supervised, semi-supervised, and unsupervised learning named Optimum-Path Forest (OPF) was proposed with competitive results in several applications, besides comprising a low computational burden. In this paper, we propose the Fuzzy Optimum-Path Forest, an improved version of the standard OPF classifier that learns the samples' membership in an unsupervised fashion, which are further incorporated during supervised training. Such information is used to identify the most relevant training samples, thus improving the classification step. Experiments conducted over twelve public datasets highlight the robustness of the proposed approach, which behaves similarly to standard OPF in worst-case scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源