论文标题
根据合成数据对不同机器学习算法的绩效评估,用于焊接关节的终身预测
Performance Assessment of different Machine Learning Algorithm for Life-Time Prediction of Solder Joints based on Synthetic Data
论文作者
论文摘要
本文提出了一种有效的计算方法,以使用温度时间曲线来预测电子组件焊料接触的损伤进程。为此,对两种机器学习算法,一种多层感知器和一个长期的短期内存网络进行了培训,并在其预测准确性和所需培训数据量方面进行了比较。使用合成的,正态分布的数据对汽车应用进行现实的数据进行培训。表面安装技术配置中简单双极芯片电阻的有限元模型用于数值计算合成数据。结果,两种机器学习算法都均显示出预测累积蠕变菌株的相关精度。培训数据长度为350小时(占可用培训数据的12.5%),这两种模型均显示多层perceptron的$ r^2 $ 0.72 $ r^2 $,而长期短期存储网络的$ r^2 $ n.87均为0.87。累积的蠕变菌株的预测错误小于10%,使用350小时的培训数据,使用更多数据时降低到5%。因此,两种方法都可以直接在电子设备上的寿命预测。
This paper proposes a computationally efficient methodology to predict the damage progression in solder contacts of electronic components using temperature-time curves. For this purpose, two machine learning algorithms, a Multilayer Perceptron and a Long Short-Term Memory network, are trained and compared with respect to their prediction accuracy and the required amount of training data. The training is performed using synthetic, normally distributed data that is realistic for automotive applications. A finite element model of a simple bipolar chip resistor in surface mount technology configuration is used to numerically compute the synthetic data. As a result, both machine learning algorithms show a relevant accuracy for the prediction of accumulated creep strains. With a training data length of 350 hours (12.5% of the available training data), both models show a constantly good fitting performance of $R^2$ of 0.72 for the Multilayer Perceptron and $R^2$ of 0.87 for the Long Short-Term Memory network. The prediction errors of the accumulated creep strains are less than 10% with an amount of 350 hours training data and decreases to less than 5 % when using further data. Therefore, both approaches are promising for the lifetime prediction directly on the electronic device.