论文标题

回归的深度关系学习及其在大脑年龄估计中的应用

Deep Relation Learning for Regression and Its Application to Brain Age Estimation

论文作者

He, Sheng, Feng, Yanfang, Grant, P. Ellen, Ou, Yangming

论文摘要

时间回归的大多数深度学习模型直接基于单个输入图像输出估计,忽略了不同图像之间的关系。在本文中,我们建议进行回归的深层关系学习,以学习一对输入图像之间的不同关系。考虑了四个非线性关系:“累积关系”,“相对关系”,“最大关系”和“最小关系”。这四个关系是从一个具有两个部分的深神经网络同时学习的:特征提取和关系回归。我们使用有效的卷积神经网络来从一对输入图像中提取深度特征,并应用变压器进行关系学习。在合并的数据集上评估了该方法,使用5倍的交叉验证,具有6,049名受试者,年龄为0-97岁。实验结果表明,所提出的方法达到了2。38年的平均绝对误差(MAE),低于配对t检验的统计显着性(p $ <0.05)的其他8种其他最新算法(两边)。

Most deep learning models for temporal regression directly output the estimation based on single input images, ignoring the relationships between different images. In this paper, we propose deep relation learning for regression, aiming to learn different relations between a pair of input images. Four non-linear relations are considered: "cumulative relation", "relative relation", "maximal relation" and "minimal relation". These four relations are learned simultaneously from one deep neural network which has two parts: feature extraction and relation regression. We use an efficient convolutional neural network to extract deep features from the pair of input images and apply a Transformer for relation learning. The proposed method is evaluated on a merged dataset with 6,049 subjects with ages of 0-97 years using 5-fold cross-validation for the task of brain age estimation. The experimental results have shown that the proposed method achieved a mean absolute error (MAE) of 2.38 years, which is lower than the MAEs of 8 other state-of-the-art algorithms with statistical significance (p$<$0.05) in paired T-test (two-side).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源