论文标题
量化及其在哈伯德 - 无与伦比的泵中的故障
Quantisation and its breakdown in a Hubbard-Thouless pump
论文作者
论文摘要
波和波函数的几何特性可以解释整个物理学整体值可观察物的外观。例如,这些“拓扑”不变式描述了在定量大厅效应中观察到的高原,并在其动态类似物(无泵)中泵送电荷。然而,颗粒间相互作用的存在可以深刻影响材料的拓扑,从而使理想化的公式在Bloch波中无效。尽管在固态系统,光子波导和光学晶格中进行了开创性的实验,但在颗粒间相互作用变化下对拓扑绝缘子的研究已被证明具有挑战性。在这里,我们在实验中实现了一个无调的泵,在光学晶格中具有可调的哈伯德相互作用,并观察具有稳健泵送的机制以及相互作用引起的分解。我们确认泵的鲁棒性抵抗比保护差距小的相互作用,这对于排斥和有吸引力的哈伯德$ u $都是正确的。此外,我们确定了绑定的费米子对以有吸引力的$ u $造成的量化运输对,并得到了配对分数和绝热性的测量。对于强烈的排斥相互作用,相反,拓扑抽水分解。但是,我们可以通过从相同的初始状态开始修改泵轨迹来恢复定量的泵。我们的实验为研究相互作用的拓扑绝缘子(包括边缘效应和相互作用引起的拓扑阶段)铺平了道路。
Geometric properties of waves and wave functions can explain the appearance of integer-valued observables throughout physics. For example, these 'topological' invariants describe the plateaux observed in the quantised Hall effect and the pumped charge in its dynamic analogon, the Thouless pump. However, the presence of interparticle interactions can profoundly affect the topology of a material, invalidating the idealised formulation in terms of Bloch waves. Despite pioneering experiments in solid state systems, photonic waveguides, and optical lattices, the study of topological insulators under variation of inter-particle interactions has proven challenging. Here, we experimentally realise a topological Thouless pump with tuneable Hubbard interactions in an optical lattice and observe regimes with robust pumping, as well as an interaction-induced breakdown. We confirm the pump's robustness against interactions that are smaller than the protecting gap, which holds true for both repulsive and attractive Hubbard $U$. Furthermore, we identify that bound pairs of fermions are responsible for quantised transport at strongly attractive $U$, supported by measurements of pair fraction and adiabaticity. For strong repulsive interactions, on the contrary, topological pumping breaks down. Yet, we can reinstate quantised pumping by modifying the pump trajectory while starting from the same initial state. Our experiments pave the way for investigating interacting topological insulators, including edge effects and interaction-induced topological phases.