论文标题
与大气循环的不同组成部分相关的温度结构
Temperature Structures Associated with Different Components of the Atmospheric Circulation on Tidally Locked Exoplanets
论文作者
论文摘要
从潮汐锁定的系外行星中观察到时间分辨的热发射可以告诉我们它们的大气温度结构。 JWST和ARIEL等望远镜将提高这些测量值的质量和可用性。这激发了人们对确定大气温度结构(尤其是大气循环的过程)过程的提高理解。该循环对于确定大气温度而言很重要,这不仅是通过其运输热量的能力,而且还因为任何循环模式都需要通过水平压力对比平衡,因此暗示了特定的温度结构。在这项工作中,我们展示了如何将潮汐锁定行星上的全球温度场分解为与大气循环的不同成分平衡的贡献。这些是固定的静止的射流,固定的rossby波和发散的循环。为了实现这一目标,我们将地势场分配成由发散循环和旋转循环平衡的组件,后者包含射流和rossby波。然后,分区的地势意味着通过静水关系对温度进行相应的分区。我们将这些诊断应用应用于理想化的通用循环模型模拟,以显示单独的旋转和不同循环如何共同组成总三维大气温度结构。我们还展示了每个组件如何为潮汐锁定行星的热相曲线贡献不同的签名。我们得出的结论是,这种分解是对温度场的物理有意义的分离,解释了其全局结构,可用于拟合热发射的观察。
Observations of time-resolved thermal emission from tidally locked exoplanets can tell us about their atmospheric temperature structure. Telescopes such as JWST and ARIEL will improve the quality and availability of these measurements. This motivates an improved understanding of the processes that determine atmospheric temperature structure, particularly atmospheric circulation. The circulation is important in determining atmospheric temperatures, not only through its ability to transport heat, but also because any circulation pattern needs to be balanced by horizontal pressure contrasts, therefore implying a particular temperature structure. In this work, we show how the global temperature field on a tidally locked planet can be decomposed into contributions that are balanced by different components of the atmospheric circulation. These are the superrotating jet, stationary Rossby waves, and the divergent circulation. To achieve this, we partition the geopotential field into components balanced by the divergent circulation and the rotational circulation, with the latter comprising the jet and Rossby waves. The partitioned geopotential then implies a corresponding partitioning of the temperature via the hydrostatic relation. We apply these diagnostics to idealised general circulation model simulations, to show how the separate rotational and divergent circulations together make up the total three-dimensional atmospheric temperature structure. We also show how each component contributes distinct signatures to the thermal phase curve of a tidally locked planet. We conclude that this decomposition is a physically meaningful separation of the temperature field that explains its global structure, and can be used to fit observations of thermal emission.