论文标题

混合神经网络增强基于物理的非线性过滤模型

Hybrid Neural Network Augmented Physics-based Models for Nonlinear Filtering

论文作者

Imbiriba, Tales, Demirkaya, Ahmet, Duník, Jindřich, Straka, Ondřej, Erdoğmuş, Deniz, Closas, Pau

论文摘要

在本文中,我们提出了一个混合神经网络增强基于物理的建模(APBM)框架,用于贝叶斯非线性潜在空间估计。当新的操作条件发挥作用或基于物理的模型不足(或不完整)时,提出的APBM策略允许模型适应,无法正确描述潜在现象。 APBM的优点和我们的估计程序是维持估计状态的物理解释性的能力。此外,我们提出了一种约束过滤方法,以控制对整个模型的神经网络贡献。我们还利用假定的密度滤波技术和立方体集成规则,以提出灵活的估计策略,该策略可以轻松处理非线性模型和高维的潜在空间。最后,我们通过分别利用非线性和不完整的测量和加速模型来利用目标跟踪方案来证明我们的方法论的功效。

In this paper we present a hybrid neural network augmented physics-based modeling (APBM) framework for Bayesian nonlinear latent space estimation. The proposed APBM strategy allows for model adaptation when new operation conditions come into play or the physics-based model is insufficient (or incomplete) to properly describe the latent phenomenon. One advantage of the APBMs and our estimation procedure is the capability of maintaining the physical interpretability of estimated states. Furthermore, we propose a constraint filtering approach to control the neural network contributions to the overall model. We also exploit assumed density filtering techniques and cubature integration rules to present a flexible estimation strategy that can easily deal with nonlinear models and high-dimensional latent spaces. Finally, we demonstrate the efficacy of our methodology by leveraging a target tracking scenario with nonlinear and incomplete measurement and acceleration models, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源