论文标题

部分可观测时空混沌系统的无模型预测

Low Voltage Customer Phase Identification Methods Based on Smart Meter Data

论文作者

Hoogsteyn, Alexander, Vanin, Marta, Koirala, Arpan, Van Hertem, Dirk

论文摘要

分布式能源产生的部署增加,以及新的大型电力负载(例如电动汽车和热泵)的整合挑战了低压分配系统的正确和可靠操作。为了解决潜在的问题,文献中提出了主动管理解决方案,这些解决方案需要分发系统模型,其中包括网络中所有消费者的相位连接性。但是,有关阶段连接性的信息实际上不可用。在这项工作中,实施了来自文献的几种基于基于电源的相位识别方法。使用公开可用的数据,在不同的智能电表精度类和智能电表渗透水平上对方法进行了一致的比较。此外,提出了一种新的方法,该方法利用集合学习,可以结合不同测量活动中的数据。结果表明,与来自相同精度类别的智能电表的功率数据相比,通常使用电压数据获得更好的结果。如果电源数据也可用,那么新颖的集合方法可以提高仅电压数据获得的相位识别的准确性。

The increased deployment of distributed energy generation and the integration of new, large electric loads such as electric vehicles and heat pumps challenge the correct and reliable operation of low voltage distribution systems. To tackle potential problems, active management solutions are proposed in the literature, which require distribution system models that include the phase connectivity of all the consumers in the network. However, information on the phase connectivity is in practice often unavailable. In this work, several voltage and power measurement-based phase identification methods from the literature are implemented. A consistent comparison of the methods is made across different smart meter accuracy classes and smart meter penetration levels using publicly available data. Furthermore, a novel method is proposed that makes use of ensemble learning and that can combine data from different measurement campaigns. The results indicate that generally better results are obtained with voltage data compared to power data from smart meters of the same accuracy class. If power data is available too, the novel ensemble method can improve the accuracy of the phase identification obtained from voltage data alone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源