论文标题

通过动态模式分解的群建模

Swarm Modelling with Dynamic Mode Decomposition

论文作者

Hansen, Emma, Brunton, Steven L., Song, Zhuoyuan

论文摘要

由于系统的固有高度固有高度的新兴动态,对生物学或工程群进行建模是具有挑战性的。大多数现有的群建模方法都是基于第一原则,通常会导致特定于特定的参数化,这些参数不会推广到广泛的应用程序。在这项工作中,我们将纯粹的数据驱动方法应用于(1)通过观察数据学习同质群的局部相互作用,并使用学到的模型来生成类似的群体行为。特别是,在规范的Vicsek群模型上开发并测试了具有控制的动态模式分解的修改版本。目的是使用SwarmDMD学习导致观察到的群体行为的代理间相互作用。我们表明,SwarmDMD可以忠实地重建群体动力学,而SwarmDMD学到的模型为数据外推提供了一个简短的预测窗口,并在预测准确性和预测范围之间进行了权衡。我们还提供了有关模型上不同观察数据类型的疗效的全面分析,我们发现距离距离会产生最准确的模型。我们认为,拟议的SwarmDMD方法将有助于研究生物学,物理和工程中发现的多机构系统。

Modelling biological or engineering swarms is challenging due to the inherently high dimension of the system, despite the often low-dimensional emergent dynamics. Most existing swarm modelling approaches are based on first principles and often result in swarm-specific parameterizations that do not generalize to a broad range of applications. In this work, we apply a purely data-driven method to (1) learn local interactions of homogeneous swarms through observation data and to (2) generate similar swarming behaviour using the learned model. In particular, a modified version of dynamic mode decomposition with control, called swarmDMD, is developed and tested on the canonical Vicsek swarm model. The goal is to use swarmDMD to learn inter-agent interactions that give rise to the observed swarm behaviour. We show that swarmDMD can faithfully reconstruct the swarm dynamics, and the model learned by swarmDMD provides a short prediction window for data extrapolation with a trade-off between prediction accuracy and prediction horizon. We also provide a comprehensive analysis on the efficacy of different observation data types on the modelling, where we find that inter-agent distance yields the most accurate models. We believe the proposed swarmDMD approach will be useful for studying multi-agent systems found in biology, physics, and engineering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源