论文标题

自动化原子硅量子点电路设计通过深钢筋学习

Automated Atomic Silicon Quantum Dot Circuit Design via Deep Reinforcement Learning

论文作者

Lupoiu, Robert, Ng, Samuel S. H., Fan, Jonathan A., Walus, Konrad

论文摘要

强大的自动设计工具对于任何计算技术的扩散至关重要。我们介绍了第一个用于硅悬挂键量子点计算技术的自动化设计工具,该工具是一种非常通用且灵活的单原子计算电路框架。自动化设计师能够通过使用Tabula Rasa Double-Deb-Deep Q学习强化学习算法来浏览任意尺寸的设计领域和真相表的复杂,高维的设计空间。证明了稳健的策略收敛范围是针对两输入的单输出逻辑电路和两输入两输出半审核的范围,该策略的融合在几个数量级的时间内少了几个数量级的阶数,比文献中唯一的其他半逐渐降低的时间少了。我们预计,基于增强学习的自动化设计工具将加速SIDB量子点计算技术的开发,从而导致其最终在专业计算硬件中采用。

Robust automated design tools are crucial for the proliferation of any computing technology. We introduce the first automated design tool for the silicon dangling bond quantum dot computing technology, which is an extremely versatile and flexible single-atom computing circuitry framework. The automated designer is capable of navigating the complex, hyperdimensional design spaces of arbitrarily sized design areas and truth tables by employing a tabula rasa double-deep Q-learning reinforcement learning algorithm. Robust policy convergence is demonstrated for a wide range of two-input, one-output logic circuits and a two-input, two-output half-adder, designed with an order of magnitude fewer SiDBs in several orders of magnitude less time than the only other half-adder demonstrated in the literature. We anticipate that reinforcement learning-based automated design tools will accelerate the development of the SiDB quantum dot computing technology, leading to its eventual adoption in specialized computing hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源