论文标题

深度学习以有效,有效地降低自适应系统中的大型适应空间

Deep Learning for Effective and Efficient Reduction of Large Adaptation Spaces in Self-Adaptive Systems

论文作者

Weyns, Danny, Gheibi, Omid, Quin, Federico, Van Der Donckt, Jeroen

论文摘要

如今,许多软件系统都面临不确定的操作条件,例如资源可用性的突然变化或意外的用户行为。如果不适当缓解这些不确定性,可能会危害系统目标。自我适应是解决此类不确定性的常见方法。当系统目标可能遭到损害时,自适应系统必须通过分析可能的适应选项(即适应空间)选择最佳的适应选项来重新配置。但是,使用严格的方法分析较大的适应空间可能是资源和耗时的,甚至是不可行的。解决此问题的一种方法是使用在线机器学习减少适应空间。但是,现有方法需要域专业知识来执行功能工程来定义学习者,并仅针对特定目标支持在线适应空间。为了应对这些限制,我们提出了“减少适应空间的深度学习加上” - Dlaser+简而言之。 DLASER+为在线适应空间缩小的可扩展学习框架提供了不需要功能工程的可扩展学习框架,同时支持三种常见类型的适应目标:阈值,优化和设定点目标。我们在两个实例的应用程序应用程序中评估了Dlaser+,其适应性空间的尺寸越来越大,以实现适应性目标的不同组合。我们将DLASER+与基线进行比较,该基线应用了详尽的分析和两种依赖学习的适应空间的最先进方法。结果表明,与详尽的分析方法相比,DLASER+对适应目标的实现有忽略的影响,并且支持除最先进的方法以外的三种常见的适应目标。

Many software systems today face uncertain operating conditions, such as sudden changes in the availability of resources or unexpected user behavior. Without proper mitigation these uncertainties can jeopardize the system goals. Self-adaptation is a common approach to tackle such uncertainties. When the system goals may be compromised, the self-adaptive system has to select the best adaptation option to reconfigure by analyzing the possible adaptation options, i.e., the adaptation space. Yet, analyzing large adaptation spaces using rigorous methods can be resource- and time-consuming, or even be infeasible. One approach to tackle this problem is by using online machine learning to reduce adaptation spaces. However, existing approaches require domain expertise to perform feature engineering to define the learner, and support online adaptation space reduction only for specific goals. To tackle these limitations, we present 'Deep Learning for Adaptation Space Reduction Plus' -- DLASeR+ in short. DLASeR+ offers an extendable learning framework for online adaptation space reduction that does not require feature engineering, while supporting three common types of adaptation goals: threshold, optimization, and set-point goals. We evaluate DLASeR+ on two instances of an Internet-of-Things application with increasing sizes of adaptation spaces for different combinations of adaptation goals. We compare DLASeR+ with a baseline that applies exhaustive analysis and two state-of-the-art approaches for adaptation space reduction that rely on learning. Results show that DLASeR+ is effective with a negligible effect on the realization of the adaptation goals compared to an exhaustive analysis approach, and supports three common types of adaptation goals beyond the state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源