论文标题

在语言条件的机器人模仿学习中,对非结构化数据很重要

What Matters in Language Conditioned Robotic Imitation Learning over Unstructured Data

论文作者

Mees, Oier, Hermann, Lukas, Burgard, Wolfram

论文摘要

机器人技术中的一个长期目标是建立可以从使用其板载传感器获得的感知中执行各种日常任务的机器人,并且仅通过自然语言指定。尽管通过利用从像素的端到端学习来实现了最近在语言驱动的机器人技术方面取得的重大进展,但由于设置的基本变化,没有明确且妥善理解的过程来做出各种设计选择。在本文中,我们对从离线自由模仿数据集中学习语言条件政策的最关键挑战进行了广泛的研究。我们进一步确定了改善性能的架构和算法技术,例如机器人控制学习的层次分解,多模式变压器编码器,离散的潜在计划以及与视频和语言表示相符的自我审议的对比损失。通过将调查的结果与改进的模型组件相结合,我们能够提出一种新颖的方法,该方法在具有挑战性的语言条件长的长摩托器机器人操纵Calvin基准的情况下大大优于艺术状态。我们已经开源的实施方式,以促进未来的研究,以学习自然语言连续指定的许多复杂的操纵技能。 http://hulc.cs.uni-freiburg.de可用代码库和训练有素的模型

A long-standing goal in robotics is to build robots that can perform a wide range of daily tasks from perceptions obtained with their onboard sensors and specified only via natural language. While recently substantial advances have been achieved in language-driven robotics by leveraging end-to-end learning from pixels, there is no clear and well-understood process for making various design choices due to the underlying variation in setups. In this paper, we conduct an extensive study of the most critical challenges in learning language conditioned policies from offline free-form imitation datasets. We further identify architectural and algorithmic techniques that improve performance, such as a hierarchical decomposition of the robot control learning, a multimodal transformer encoder, discrete latent plans and a self-supervised contrastive loss that aligns video and language representations. By combining the results of our investigation with our improved model components, we are able to present a novel approach that significantly outperforms the state of the art on the challenging language conditioned long-horizon robot manipulation CALVIN benchmark. We have open-sourced our implementation to facilitate future research in learning to perform many complex manipulation skills in a row specified with natural language. Codebase and trained models available at http://hulc.cs.uni-freiburg.de

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源