论文标题
扭曲双层石墨烯中的Moiré疾病效应
Moiré disorder effect in twisted bilayer graphene
论文作者
论文摘要
从理论上讲,我们研究了具有无序的Moiré模式的魔法扭曲双层石墨烯的电子结构。通过使用结合不均匀晶格失真的扩展连续模型,我们发现平坦带状态的局部密度几乎不扩大,但在大多数地方将其分为上下子带。分裂能的空间依赖性几乎完全取决于异形诱导的有效矢量电位的局部值,而局部扭角和局部Moiré时期的变化对电子结构产生了相对较小的影响。我们通过对魔术角平坦带的伪兰道级图片来解释对局部矢量电位的独家依赖性,我们获得了分裂能量的分析表达,这是应变振幅的函数。
We theoretically study the electronic structure of magic-angle twisted bilayer graphene with disordered moiré patterns. By using an extended continuum model incorporating non-uniform lattice distortion, we find that the local density of states of the flat band is hardly broadened, but splits into upper and lower subbands in most places. The spatial dependence of the splitting energy is almost exclusively determined by the local value of the effective vector potential induced by heterostrain, whereas the variation of local twist angle and local moiré period give relatively minor effects on the electronic structure. We explain the exclusive dependence on the local vector potential by a pseudo Landau level picture for the magic-angle flat band, and we obtain an analytic expression of the splitting energy as a function of the strain amplitude.